
U T T E R W O R T H  
I N E M A N N 

Kinematics of the quasi-coherent  
vortical structure in near-wal l  turbulence 
N o b u h i d e  Kasagi,  Yasushi Sumi tan i ,  Yuji  Suzuki ,  and Oaki  lida 
Department of Mechanical Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 

Near-wall turbulence structures in a direct numerical simulation database of turbulent 
channel flow were investigated by using a three-dimensional (3-D) computer graphics 
software tool. Several candidate methods to detect near-wall vortical structures were 
tested. They were based on instantaneous flow properties such as pressure, vorticity, 
enstrophy, dissipation rate, and the second invariant of deformation tensor. Among them, 
the low-pressure regions and those of negative second invariant of the deformation tensor 
corresponded well to the cores of vortical fluid motion. The spatial distribution of each 
term in the Reynolds stress transport equations was also examined in the instantaneous 
field to explore the role of vortical structures in production and destruction of the Reynolds 
stresses. It is found that these terms are distributed highly intermittently in space; intense 
production occurs mostly on both sides of near-wall streamwise vortices, and high 
redistribution, diffusion, and destruction regions also exist near around the vortices. High 
helicity regions are found to be associated with the elongated near-wall streaky structures. 
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Introduction 

Because the near-wall region is crucial for momentum, heat 
and mass transfer, understanding its structure and associated 
transport mechanism is of great importance from both scientific 
and engineering viewpoints. The pioneering work made by 
Stanford researchers, such as Kline et al. (1967) and Kim et al. 
(1971), revealed that the near-wall region of turbulent boundary 
layer exhibits recognizable streaky structures that are fairly 
periodic in the spanwise direction. They also documented 
deterministic behavior of a fluid motion producing the 
Reynolds stresses, which is labeled as bursting. Since then, a 
number of studies, based mainly on experimental techniques 
and sophisticated data processing, have been made to deepen 
our physical understanding of near-wall turbulence (see, e.g., 
Cantwell 1981; Robinson 1991a). However, owing to limited 
information obtained from the experimental measurements, the 
spatial relationship between various structures found as well 
as their underlying dynamics still remain unknown. 

With the recent advances in large-scale computers, direct 
numerical simulation (DNS) has become a valuable resource 
for turbulence research. Unlike laboratory experiments, DNS 
provides such valuable information as velocity, pressure, and 
vorticity at any point and time in the turbulent flow field. 
Robinson et al. (1990) was the first to apply a three-dimensional 
(3-D) computer graphics technique to an investigation of 
turbulent structures in a DNS database. They identified the 
various structures experimentally observed, such as low- and 
high-speed streaks, arch-like vortical structures, and local 
high-shear layers, in the turbulent boundary layer numerically 
simulated by Spalart (1988). They also found that the marked 
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vortical structures, of which cores were identified as local 
low-pressure regions, are in close spatial association with the 
two major modes of turbulent motion generating the Reynolds 
shear stress; i.e., ejections and sweeps. Lyons et al. (1989) found 
in their channel flow DNS database that quadrant two 
(ejection) and quadrant four (sweep) events, which possess a 
streaky structure, are associated with closed roller eddies in the 
cross-stream plane and that these eddies, on average, have a 
spanwise dimension of 50 wall units and a streamwise 
dimension of 400 ~ 450 wall units. 

In the present study, near-wall turbulence structures in a 
DNS database of turbulent channel flow were visualized and 
examined by using a 3-D computer graphics software tool. The 
goal of this study is to reveal the detailed kinematics and 
associated turbulence mechanisms of the quasi-coherent 
vortical structures near the wall. The knowledge thus obtained 
should be useful for advancing our basic understanding of the 
physics of turbulence, and hence, certainly crucial for 
developing and improving closure models and control 
methodologies of turbulent transport phenomena. 

Direct numerical simulation database and 
visualization technique 

Features of the DNS database of a fully developed turbulent 
channel flow (Kuroda et al. 1994) used in the present study are 
summarized as follows. The Reynolds number based on the 
friction velocity u~ and the channel half-width 6 is 150. The 
computation was executed on 128 x 97 x 128 grid points in 
the streamwise x, wall-normal y, and spanwise z directions, 
respectively. The computational domain was 5n6 x 26 x 2n6 
in the x-, y- and z-directions, respectively. A spectral method; 
i.e., Fourier series in the x- and z-directions and a Chebyshev 
polynomial expansion in the y-direction, were employed. 
Accuracy and reliability of this DNS database have been 
confirmed to be sufficient through extensive comparison of the 
calculated turbulent statistics and instantaneous flow patterns 
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Figure I Computational volume, visualized subvolume, and 
coordinate system 

with those obtained by previous experimental and numerical 
results (Kuroda et al.; see also Kasagi et al. 1992). 

Figure 1 shows the computational domain and the 
visualized subvolume schematically. The visualized subvolume 
is 1.7n6 x 3 x 0.8n6 in the x-, y- and z-directions, which, 
correspond to about 800, 150, and 400 wall units, respectively. 
Figure 2 shows the hardware and data flow for visualization. 
An instantaneous turbulence dataset obtained from the DNS 
executed on a HITAC S-820/80 supercomputer was divided 
into 14 data subsets, and one of them was transferred via 
Ethernet to a graphic workstation (IRIS Crimson Elan)• A 
commercially available 3-D graphics software tool, AVS 
(Application Visualization System, AVS Inc.), was used for 
visualization of various turbulence structures. 

Results 

Detec t ion  o f  nea r -wa l l  vor t ica l  structures 

Although vortical structures are believed to play a primary role 
in turbulent phenomena, widely accepted definition of a vortex 
does not exist. In this study, the following definition of a vortex 
proposed by Robinson (1991b) was basically adopted. "A 
vortex exists when instantaneous streamlines mapped onto a 
plane normal to the vortex core exhibit a roughly circular or 
spiral pattern, when viewed from a reference frame moving with 
the center of the vortex core" (p. 199). However, streamlines 
are hard to use for automatically detecting 3-D vortical 
structures even on a high-performance graphics computer. 
Hence, it is desirable to have a scalar quantity of which a 
threshold can be used for detection. Robinsion et al. (1990) 
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Figure 2 Hardware and data flow for visualization 

found that the local low-pressure regions correspond well to 
the vortex cores. Suzuki and Kasagi (1991) visualized the 
low-pressure regions in the DNS database of channel flow 
produced by Kuroda et al. (1994). They also found from 
examination of associated instantaneous velocity vectors in 
various cross planes that many of the low-pressure regions were 
actually created by rotational fluid motions. 

In the present study, each of the pressure fluctuation, 
vorticity, dissipation rate, and the second invariant of the 
deformation tensor is considered as a candidate indicator of 
vortical structures, and the distributions of those properties are 
compared with the instantaneous streamlines. 

L o w - p r e s s u r e  reg ion .  Figure 3(a) shows 3-D contour 
surfaces of pressure fluctuation, p' ÷ < - 3.0, in a cross-stream 
(y-z) plane. In this figure, the visualized volume has a 
dimension of 800 × 150 x 400 (wall units) 3 in the x-, y- and 
z-directions, respectively, and the grid space is 30 wall units. 
The lower grid plane corresponds to the bottom wall and the 
flow direction is from the lower left to the upper right. 
Instantaneous streamlines and pressure fluctuations in the y-z  
plane, which is 150 × 400 (wall units) 2, are shown in Figure 
3(b). The low-pressure regions; e.g., regions A and B in Figure 
3(b), correspond to the cores of vortical fluid motion as 
reported by Robinson et al. (1990). In Figure 3(b), 
several additional circular streamlines, where p' ÷ > 0, can also 
be seen. This is because the streamlines cannot represent the 
strength of the vortical fluid motion. It is separately confirmed 
from the (v'-w') vector diagrams that these vortical motions are 
very weak. Hence, the low-pressure regions should be 
interpreted as strong vortical structures. In Figure 3(a), several 
inclined banana-shaped streamwise vortices can be observed 
(for the top view, see Figure 14(a)). The diameter and 
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pressure 
Reynolds number based on momentum 
thickness and maximum velocity 
rotation rate tensor, (u'~ ~ - u~. i)/2 
strata rate tensor (u i ~ + uj )/2 
velocity component in the x~-direction 
velocity components in the x-, y- and 
z-directions 
friction velocity, = w / ~  
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ith direction 
second invariant of deformation tensor, u~,juj,~ 
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6 channel half width 
e homogeneous dissipation rate 
v kinematic viscosity 
p density 
~w wall shear stress 
to,, ogy, ~o= vorticity components in the x-, y- and 

z-directions 

Superscripts and subscripts 

( )' fluctuating component 
( )* normalized by u,, v, and p 
( ) ensemble average over the x-z  plane and time 
(),i derivative with respect to x~ 
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streamwise length of the largest vortex shown here are about 
40 and 250 wall units, respectively. When detecting the vortical 
motions, the the threshold level of pressure, which is presently 
p' + = -3 .0 ,  is somewhat arbitrarily determined. However, the 
detection of the vortex core is essentially insensitive to the 
threshold level; even when it is changed, the vortex core can 
be detected at the same location, although the diameter and 
length of the low-pressure region changes accordingly. 

Suzuki and Kasagi (1991) classified the vortical structures 
into four types, i.e.; hairpin-, head-, hook-, and banana-shaped 
vortices. Among 50 vortical structures they observed, the 
numbers of inclined banana- and hook-shaped vortices were 
the largest (21) and the second largest (10), respectively, while 
the symmetric hairpin-shapes were the rarest (3). Kasagi et al. 
(1986), Kim et al. (1987), Guezennec et al. (1989), and Robinson 
et al. (1990) also reported that an asymmetric single vortex is 
predominant in the near-wall region rather than a pair of 
counter-rotating vortices. It is noted that two major vortices 
shown in Figure 3(a) are categorized as banana-shaped vortices, 
which have been observed most frequently in the present DNS 
database, as mentioned above. 

Robinson (1991b) reported that arch-like vortices are 
dominant in his visualization. We can conjecture that this 
discrepancy is owing to the Reynolds number effect. In the 
present study, the Reynolds number, Re0, based on the 
momentum thickness and the maximum velocity is 229, which 
is much smaller than that of the database used by Robinson 
et al. (1990) and Robinson (1991b) (Re0 = 670). Head and 
Bandyopadhyay (1981) pointed out some dependency of 
vortical structures on the Reynolds number, but further 
investigation is necessary. 

S t r e a m w i s e  vor t i c i t y  and enst rophy .  Figure 4(a) shows 
3-D contour surfaces of streamwise vorticity, It~'~l > 0.25. The 
instantaneous streamlines and the distribution of streamwise 

Figure 3(a) Three-dimensional (3-D) contour surfaces of 
pressure fluctuation in the visualized subvolume of 800 x 150 
x 400 (wall units)3: white, p'+ < - 3 . 0  

Figure 3(b) Instantaneous streamlines and pressure fluctua- 
tion in the y-z  plane [150 x 400 (wall units) 2]: gray to black, 
p'+ = 0 to -3 .0 ;  gray to white, p'+ = 0 to +3.0 

Figure 4(a) 3-D contour surfaces of streamwise voriticity: 
white, JoJ~ + I > 0.25 

Figure 4(b) Instantaneous streamlines and streamwise vorti- 
city in the y-z plane: gray to white, to~ + = 0 to - 0 .2 ;  gray to 
black, to~ + = 0 to +0.2 

vorticity fluctuation in the same y - z  plane as in Figure 3(b) are 
simultaneously shown in Figure 4(b). The streamwise vorticity 
is actually large in the vortex core. However, ~o' x is often large 
at the periphery of a streamwise vortex, and the sign is 
opposite to that in the vortex core. For instance, the region 
beneath the vortex exhibits high o9' with the opposite sign 
owing to the nonslip condition at the wall (Kasagi et al. 1986). 
Additionally, Robinson (1991b) reported that to' x is con- 
centrated in local dw'/Oy shear layers. These facts make it 
difficult to differentiate vortices from shear layers without the 
streamline and/or vector plots. 

Figure 5(a) shows 3-D contour surfaces of large enstrophy 
t~'~to'i, while the instantaneous streamlines and the enstrophy in 
the y - z  plane are shown in Figure 5(b). Among the three 
components, ~o'= dominates the entrophy in the near-wall 
region, because the velocity gradient component of t3u'/~y is 
very large. Therefore, the enstrophy is found to be 
inappropriate for vortex detection. 

Diss ipat ion  rate.  Figure 6 shows the instantaneous 
dissipation rate product s'~js'ii in the y - z  plane, where s'ij is 
defined as follows: 

s'q = (u'i, j + u~.i)/2 (1) 

where a comma followed by an index indicates differentiation 
with respect to the indexed spatial coordinate. It is noticed that 
a high dissipation rate exists in any high-shear regions as well 
as in vortex cores. Thus, the dissipation rate is also 
inappropriate for vortex detection. Robinson (1991b) reported 
that the instantaneous dissipation was successfully used for 
locating vortices in the near-wall region. However, there is an 
error in his formulation of relating the instantaneous 
dissipation to the entrophy, which might have produced a 
mapping with a distinct dissipation peak in the vortex core. 

4 Int. J. Heat and Fluid Flow, Vol. 16, No. 1, February 1995 



Kinematics o f  quasi-coherent vortical structure: N. Kasagi et aL 

Figure 5(a) 
>0.1 

3-D contour surfaces of enstrophy: white, ro'i+eYi + 

Figure 6 Instantaneous streamlines and dissipation product 
the y-z plane: white to black, 6 j+6+ = 0 to 0.02 

i n  

Figure 5(b)  Instantaneous streamlines and enstrophy in the 
y-z plane: white to black, o'~+eJ'~ + = 0 to 0.05 

From the above fact, it is interesting to note that the 
streamwise vortex core is not at the pure solid rotation state, 
but is under a considerable strain. The distribution of the 
homogeneous dissipation rate e (= vu' i iu; j), which is often 
used in turbulence modeling, is found si'mil'ar to that of s'us' u, 
and hence, e is not an appropriate vortex indicator either (not 
shown here). 

Second invariant o f  t h e  deformation tensor. The 
second invariant of the deformation tensor appears in the 
right-hand side of the Poisson equation of pressure: 

- p , , / p  = ui,juj, i ~ -  I I  (2) 

where I I  can be decomposed as follows: 

I I  = 2£1~,jU'j.~ + u~,ju~,~ + fi~,j~j,, (3) 

Figures 7(a) and 7(b) show I /  and the second term on the 
r igh t -hand side o f  Equa t ion  3, respectively. F rom compar ison 
between these figures, the d is t r ibu t ion  o f / / a n d  of  the second 
term on the r igh t -hand side o f  Equat ion  3 are found a lmost  
the same. Hence, the second term on the right-hand side of 
Equation 3 should be dominant so that the other terms can 
be neglected. Hereafter, u' i ju~i  is denoted as II ' .  Figure 7(c) 
shows 3-D contour surlSccs o1" II ' .  In Figure 7(b), the regions 
of negative l I '  correspond to the vortex cores fairly well. 
Moreover, the regions of positive I I '  surround the vortex cores. 
The second invariant of the deformation tensor II '  can be 
written as follows: 

u;.ju~., = s ; j s ' , j  - r',/,j 
= s;js;j - oY/o;I2 (4) 

where, 

r; j = (u'i. J - u~.i)/2 (5) 

Figure 7(a) Instantaneous streamlines and second invariant of 
the deformation tensor I I  in the y-z plane: gray to black, 
u+.u +. = 0 to - 0 . 0 2 ;  gray to white, u~-.u?. = 0 to +0.02 

t,J I . t  t,J 1,1 

Figure 7(b) Instantaneous streamlines and second invariant of 
the deformation tensor I/' in the y-z plane: gray to black, 
u '+ u~ ÷ = 0 to - 0 . 0 2 ;  gray to white, u'/: u~~ = 0 to +0 .02  i , i  j , i  t,I I , t  

Figure 7(c) 3-D contour surfaces of second invariant of the 
deformation tensor: white, u '+ u '÷ < - 0 . 0 2  i , j  j , i  
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From Equation 4, rotation is greater than strain in the regions 
where I I '  < 0. Because the regions of negative l l '  correspond 
to the vortex cores much better than those of high vorticity or 
dissipation rate alone, it is crucial to take into account relative 
strength of rotation to strain in the deformation of fluid 
elements in order to detect near-wall vortices. 

Product ion and destruct ion o f  Reynolds stresses in 
the instantaneous f l ow  f ield 

F r o m  the results above, i t  is clear that  low-pressure regions 
can be interpreted as relatively strong vortical motions. We 
now discuss their dynamical significance through visualization 
of various basic processes of turbulence along with the 
low-pressure regions. Although only a single realization is 
represented here, most near-wall quasi-streamwise vortices 
examined are found to play qualitatively similar roles, as 
discussed in the following. 

Figure 8 shows the low-pressure regions and those of large 
positive Reynolds shear stress product -u 'v ' .  The ejection and 
sweep, which respectively denote outward movement of 
low-speed fluid and wallward movement of high-speed fluid, 
exist along both sides of the vortex. Almost all the ejections 
are associated with the vortical structures, while some of the 
sweep motions appear without vortices near the wall. The close 
relationship between the streamwise vortical motion and the 
high Reynolds shear-stress product is in good qualitative 
agreement with previous studies (Cantwell 1981; Kasagi et al. 
1986, 1992; Lyons et al. 1989; Robinson et al. 1990; Robinson, 
1991a, 1991b). 

Hereafter, the basic turbulence processes, which are 
represented by the terms in the transport equations of Reynolds 
stress, are visualized and examined in detail. We show the 
spatial relationship between the vortical structure and the 
modes of fluid motion that should contribute significantly to 
the averaged budget equations. The budget equation of 
Reynolds shear stress - u' ÷ v' ÷ is written as follows: 

0 = v '  ~ + +  

Production Velocity pressure- 
gradient correlation 

c9 c~ 2 Ou '+ Ov '+ 
+ u'+v ' + 2 -  + ~ u ' + v ' + + 2  + ~ + (6) 

~3y + oy  ox~ ox .  

Turbulent Viscous Dissipation 
diffusion diffusion 

i 

where each term has been nondimensionalized by u~/v.  Note 
that the velocity pressure-gradient correlation term acts as a 
major destruction term and almost balances with the 
production, and that the diffusion terms are relatively small 
and appreciable only in the region close to the wall 
(Kasagi et al., 1992; Kuroda et al., 1994; Spalart, 1988). 

The instantaneous production of the Reynolds shear stress 
v '+2~f l+ /~y  + in the y - z  plane is shown in Figure 9. Regions 
L and H denote the low- and high-pressure regions, where 
p' + < - 3.0 and p' + > + 3.0, respectively. It is evident that the 
stress production distributes quite intermittently in space and 
takes large values on the both sides of the vortex. A typical 
pattern of pressure distribution can be seen on the left-hand 
side in this figure; namely, a large-scale, low-pressure region 
and two associated high-pressure regions, which are induced 
by the clockwise rotating vortex. The high-pressure region 
obliquely above the vortex is formed by the collision of the 
low-speed fluid ejected with the high-speed fluid convected 
from upstream, while that on the wall is caused by the 
impingement of the high-speed fluid onto the wall. 

Figure 10 shows the instantaneous velocity pressure-gradient 
correlation term in the same y-z plane as in Figure 9. From 
the observation of these terms, Kasagi and Ohtsubo (1993) 
reported that the production and destruction of the shear stress 
are vigorous near around the vortex core. This fact is again 
confirmed in Figures 9 and 10. 

The velocity pressure-gradient correlation term can be 
decomposed into the pressure-strain correlation term and the 
pressure-diffusion term as follows: 

ap' + ~p' + p I - -  + ~v' + U r +  . .~  V ' +  - -  , +  ey+ + +) 

(2p,+,+ __° p'+v'+) /7) 
+ + dx + 

m 
Figure 9 Production for -u 'V in the y-z plane: whi te to black, 
v'+2(~O+/~y +) = 0 tO 0.4 

Figure 8 3-D contour surfaces of shear product: white, 
p'+ < - 3 . 0 ;  dark gray, ejection: ( - u ' + V + ) 2  > 3.0; l ight gray, 
sweep: ( - - d + V ' + ) 4  > 3 .0  

Figure 10 Velocity pressure-gradient correlation for - d V  in 
the y -zp lane:gray towh i te ,  {d+(ap'+/dy ÷) + v'+(~p'÷/~x÷)} = 0 
to --0.4; gray to black, {c(+(d/J+/~y +) + v'+(~p'+/ax÷)} = 0 to 
+ 0 . 4  
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m 

Figure 11 Pressure-strain for - u ' V  in the y-z plane: gray to 
white, -p'+{(<3d+/dy +) + (dV+/dx+)} = Oto -0 .4 ;  grayto black, 
--p'+{(du'+/dy +) + ( d V / a x ÷ ) }  = 0 to +0.4 
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internal shear layer is elongated in the streamwise direction, 
accompanied by a local stagnation region, where p' > 0. They 
also found that the internal shear layer often rolls up into a 
transverse vortex element and pointed out some dynamical 
importance of the transverse vortices. In the present database, 
there exists only an inclined streamwise vortex as mentioned 
above, so that 09'= does not show marked peak at the tip of the 
shear layer and the roll-up into a low-pressure region is rather 
weak. It is noted that the streamwise vortex has a tilt to the 
spanwise direction, as can be seen in Figure 14(a). Thus, it is 
conjectured that, instead of the transverse vortex element, the 
tilt of the streamwise vortex contributes to this weak roll-up. 

The spatial relationship between the near-wall quasi-stream- 
wise vortex and the production, destruction, and diffusion of 
- u ' v '  is schematically illustrated in Figure 15. A low-pressure 
region corresponds to the core of an inclined streamwise 
vortex near the wall. On the sweep side of the vortex, the 

Figure 12 Pressure diffusion for -u 'v"  in the y-z plane: gray 
to white, ~(p'+u'+)/ay + + ~(p'+V+)/dx + = 0 to -0 .4 ;  gray to 
black, a(p'+ d+ )/ay + + ~(p'+ V+ )/~x + = 0 to 0.4 

Hence, instantaneous distributions of these terms together with 
the low-pressure regions, in the y - z  plane are shown in Figures 
11 and 12. The high pressure-strain regions, which are known 
to act as a dominant sink in the Reynolds shear stress budget, 
exist in both high- and low-pressure regions. In Figure 1 2, the 
negative pressure-diffusion regions, where -u ' v '  is lost, exist in 
between the high- and low-pressure regions. In contrast, the 
positive diffusion regions, where - u ' v '  is gained, exist inside 
the high- and low-pre,;sure regions. Although the pressure 
diffusion is negligibly small compared with the pressure-strain 
correlation in the averaged budget of the Reynolds shear stress, 
the former is on the same magnitude as the latter in the 
instantaneous flow field. 

The instantaneous turbulent diffusion term {d(u'+2v'+)/ 
ax + + a(u'+v'+2)/ay + + ~(u'+v'+w'+)/~z +} in the y - z  plane is 
shown in Figure 13. It is noted that only y-derivative term 
survives when the averaged Reynolds stress equation, i.e., 
Equation 6, is derived. The negative turbulent diffusion region 
exist on the both sides of the vortex, where the production is 
large. The positive turbulent diffusion regions exist in the 
regions between the hight- and low-pressure regions. As a result, 
the turbulent diffusion transports - u ' v '  from the production 
regions to the regions between high- and low-pressure regions. 
Thus, these diffusion terms cannot be neglected in an analysis 
of the kinematics of the near-wall turbulence structures. On the 
other hand, the viscous diffusion and the dissipation rate terms 
were found to be negligible in the instantaneous field as well 
as in the averaged budget of the Reynolds shear stress (not 
shown here). 

Figure 14(b) shows the distribution of spanwise vorticity 09'= 
in the x-y cross section s]hown in Figure 14(a). An internal shear 
layer is clearly observed as negative regions of spanwise 
vorticity fluctuation. As Robinson et al. (1990) reported, the 

Figure 13 Turbulent diffusion for - u ' V  in the y-z plane: 
grayto white, 67(/./'+2b/+)/t(~X + + (3(U'+1,/+2)//63)/+ + (~(U'+ I,/+l,,t/+)// 
az + = 0 to - 0 .4 ;  gray to black, d(u'+2V+)/~x + + ~(u '+ V+2)/dy + 
+ a(d+V+vC+)/~z+ = 0 to +0.4 

Figure 14(a) Spanwise vorticity o9 z in the x-z plane: gray to 
black, oY + = 0  to -0 .2 ;  gray to white, ~o'z+ = 0  to +0.2; 
white, p'~ < - 3 . 0  

Figure 14(b) Spanwise vorticity co' z in the x-y plane: gray to 
black, o~ + = 0 to - 0 .2 ;  gray to white, co'z+ = 0 to +0.2;  lines, 
p ' + =  -3 .0 ,  -4 .0 ,  -4 .7 ,  +3.0, +4.2, +5.5 

Int. J. Heat and Fluid Flow, Vol. 16, No. 1, February 1995 7 



Kinematics of quasi-coherent vortical structure: N. Kasagi et el. 

High Pressure 
Potato ~ : Production 

~ ; : Pressure Strain 
: Turbulent Diffusion 
: Pressure Diffusion 

Low Pressure 

- I l l  vo. . 
Near-Wall 

, , ~ I ( ~ / / / . / ' ~ A  High Pressure 

Figure 15 Relat ionship between a near-wal l  quasi -s t reamwise 
vortex and the product ion,  pressure-strain, and diffusion of -u'V 

Figure 17 Pressure-strain for  u '2 in the y-z plane: gray to black, 
2p'+(~u'+/~x +) = 0 to - 0 . 4 ;  gray to whi te,  2p'+(3u'+/~x +) = 0 
to + 0.4 

Figure 18 Pressure-strain for V 2 in the y-z plane: gray to black, 
2p'+(OV+/Sy +) = 0 to - 0 . 4 ;  gray to whi te,  2p'+(OV+/Oy +) = 0 
to + 0.4 

Figure 16 Product ion for U '2  in the y-z plane: 
black, -2u'+V+(#O+/Oy +) = 0 to - 0 . 4 ;  gray to whi te,  
-2 t /+V+(#O+/dy +) = 0 to + 0 . 4  

gray to 

high-pressure region near the wall is produced by the fluid 
impingement onto the wall that is induced by the vortex 
motion. On the ejection side of the vortex, low-speed fluid is 
lifted up, and its collision against high-speed fluid from 
upstream forms a local stagnation region, where p ' >  0. 
Instantaneous high production rate of the Reynolds shear stress 
takes place on both sides of the vortex. The low- and 
high-pressure regions are regarded as high destruction 
(pressure-strain correlation) regions of the Reynolds stress. The 
turbulent diffusion transports the Reynolds shear stress from 
the high production regions to the regions between the 
high- and low-pressure regions. The pressure diffusion further 
transports the Reynolds stress from the regions between the 
high- and low-pressure regions to the high destruction regions. 

The budget equations of normal stresses are derived as 
follows: 

0 = -- 2u'+v '+ - -  63fi+ ~?u'+ 
63y+ + 2p '+ dx + 

63/)' + 
0 = 0 + 2p '+ 

Oy + 

O =  
63W r + 

0 +2p '+ 
Oz + 

Production Pressure-strain 
correlation 

U,+2 ,+ q_ 632 U,+2 

Oy + 63y+2 

t~ v,+3 + ~ + 2  v,+ 2 
63y+ 

63 V'+2W '+2 -~ 632 ,+2 

63Y+ Oy +~ w 

Turbulent Viscous 
diffusion diffusion 

The production of the Reynolds normal stress u '2 in the 
same y - z  plane is shown in Figure 16. The large production of 
u '2 takes place on the both sides of the vortex like that of the 
shear stress. This is in accordance with Lyons et al. 0989). 

The redistributions of the Reynolds normal stresses u '2, v '2, 
and w '2 through the pressure-strain correlation in the same y-z 
plane are shown in Figures 17, 18, and 19, respectively. In 
Figure 17, the pressure-strain correlation term for u'2; i.e., 
2'(63u'/63x) is shown. In almost the whole field, this term is 
negative, and the turbulent kinetic energy is redistributed from 
the u-component to the others. Especially in the vortex core 
and in the two associated high-pressure regions, the loss is quite 
large, so that the redistribution is even more vigorous. In Figure 
18, the pressure-strain correlation term for v '2 is shown. It is 
found that this term is positive in the vortex core and negative 
around it. In the core of the high-pressure region away from 
the wall, 2p'(63v'/63y) is positive, while it is negative in the lower 
part of this region as well as in the high-pressure region 
attached to the wall. 

63U' + 63u' + 
0 - - 2 - - - -  

&~+ 63x; 

- -  63 p,+v,+ 63v '+ 63v '+ 
- 2 ~y+ - 2 ax--~- 63x~ 

63w' + 63w' + 
0 - - 2  

63x? &; 
~ _, , ._~. .~ 

Pressure Dissipation 
diffusion 

(8) 

(9) 

(1o) 
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The pressure-strain correlation term for w ,2 is shown in 
Figure 19. It is negative in the low-pressure vortex core and 
positive around it. On tile other hand, in the twohigh-pressure 
regions, the pressure-strain is positive so that w 'z is gained. 

In summary, th_e core of the vortex, the redistribution from 
u '2 and w '2 to v '2 occurs, while that from v 'z to w '2 occurs 
around the vortex. In tile high-pressure region away from the 
wall, turbulent kinetic energy is transferred from u '2 to v '2 and 

w '2. This is because the low-speed fluid ejected by the vortical 
motion collides with tile high-speed (u '>  0) fluid convected 
from upstream, and then the high-speed fluid changes its 
flowing direction to the y- or z-direction. In the lower part of 
the high-pressure region away from the wall, the redistribution 
from v '2 to u '2 and w '2 occurs. In the high-pressure region near 
the wall, the redistribution from u '2 and v '2 to w '2 occurs. This 
is because the sweep motion induced by the vortex gives rise 
to the "splatting" on the wall (see, e.g., Lee and Hunt 1988; 
Moin and Kim 1982). 

Hel i c i t y  

The 3-D con tour  surfaces o f  hel ic i ty and of  low-  and high-speed 
streaks are shown in ]Figures 20 and 21, respectively. The 
helicity is defined as ult~' i, and the streaks are presently 
distinguished as the regions of l u'+l > 4.0. A strong 
resemblance can be observed between the distributions of 
helicity and streaks, and thus, the streaky structures elongated 
in the streamwise direction should carry most of the helicity 
in the near-wall region. It is known that the energy cascade 
should be suppressed when the helicity takes a large value 
(Yoshizawa and Yokoi, 1992), so relatively long persistence of 
the streaky structures i,; related to this close correspondence 
between the high-helicity regions and the streaky structures. 

Figure 19 Pressure-strain for w '2 in the y-z plane: gray to black, 
2p'+(~vv'+/~z+) = 0 to - .0.4; gray to white, 2p'+(~W+/~z+) = 0 
to +0 .4  

Kinematics of quasi-coherent vortical structure: N. Kasagi et al. 

Figure 21 3-D contour surfaces of streamwise velocity and 
pressure f luctuation: white, p'+ < - 3 . 0 ;  gray, lu'+J > 4.0 

C o n c l u s i o n s  

The near-wall quasi-coherent turbulence structures in a DNS 
database of turbulent channel flow were investigated by using 
a 3-D computer graphics technique. The following conclusions 
are derived. 

(1) Both the low-pressure regions and those of negative second 
invariant of the deformation tensor correspond to the cores 
of vortical motion fairly well. The latter indicates the local 
region where the rotation of a fluid element excels the strain 
in strength. Hence, even weak vortical motions can be 
detected by the negative second invariant of the 
deformation tensor, while only strong ones can be marked 
by the low-pressure regions. 

(2) The near-wall, quasi-streamwise vortical structures play a 
primary role in the production and destruction of the 
Reynolds shear stress. Under a characteristic phase 
relationship, the production, pressure-strain, pressure 
diffusion, and turbulent diffusion mechanisms are dis- 
tributed closely around the vortical structure. 

(3) The production and redistribution of the Reynolds normal 
stresses are also dominated by the streamwise vortical 
structures; the high u '2 production regions exist on both 
sides of the vortices, while the redistribution to other 
components occurs inside the low- and high-pressure 
regions associated with the vortical structure. Thus, the 
occurrence of the essential mechanism of near-wall 
turbulence is highly intermittent in space and is 
concentrated in the region of the inclined streamwise 
vortical structure. 

(4) The high-helicity regions are elongated in the streamwise 
direction and are mostly associated with the streaky 
structures. 

Figure 20 3-D contour surfaces of helicity and 
fluctuation: white, p'+ < -3 .0 ;  gray, I~+o~'i+l > 0.6 

pressure 
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